

CMPT 275 / Fall 2017 / H. Tsang - 1 -

CMPT 275-4 E100 – Software Engineering I

Fall 2017

Assignment 2 (10%) - Requirements and Initial Design1

Deliverables Due Time

1) Requirement Document Wed Oct 18, 2017 11:55PM

2) Design document + Quality

Assurance Plan

Fri Oct 20, 2017 11:55PM

PLEASE NOTE THE DUE DATE AND TIME.

LATE SUBMISSION WILL NOT BE ACCEPTED.

SUBMIT DOCUMENTS TO BOTH CANVAS AND TURITIN.

INCOMPLETE SUBMISSION WILL RESULT IN PENALTY.

Initial Requirements and Design

For this assignment your team needs to prepare three documents: 1) a requirements

document, 2) a design document, and 3) a quality assurance plan.

1) Requirements Document

Your requirements document will be in the form of a user manual. It might seem strange to

write a user manual before you have written any code for the system, but it is a good way to

focus on the user-level requirements without getting bogged down by implementation details.

While we call this document the user manual, this is in fact a combination user manual

(meant for end-users) and requirements document (meant for system designers). You must

therefore write this in a language and format that is useful for both end-users and designers:

don't make it too technical, nor too vague.

At this early point in the project it is more important to make this user manual useful for

designers. Make sure there is enough detail and information in it so that a system

designer could ideally design and implement your system from the manual alone.

This is a very important point: vague requirements are perhaps the single biggest problem

that teams have in this course. Many teams report at the end that they wish they had spent

more time nailing down these requirements, and making them more detailed.

1 Adapted from Dr. Toby Donaldson’s note in the description of this assignment.

CMPT 275 / Fall 2017 / H. Tsang - 2 -

Structure your user manual as follows:

1. Introduction: Explain what the system does and what is it useful for. You may be

able to borrow text from your Project planning document.

2. Intended Audience List: the kinds of users for this system in some detail (certainly

more detail than in the Project planning document from the previous assignment).

Make clear what experience, expertise, and goals you assume they have.

3. Features/Functional Requirements: Catalog every significant feature of the system.

This should be an exhaustive list. Hint: Give each of these features its own anchor or

page, so that in the design document (described below) you can easily link to them.

This is a major part of this assignment, and you need to take it seriously and do it

well if you want to be sure you deliver a high-quality final project.

4. Non-functional requirements: Describe your system's non-functional requirements.

5. Example Tutorials: Provide 3 - 5 (or more, if necessary) examples of typical usage

scenarios. These need to be highly detailed, step-by-step tutorial-like descriptions of

how to use your system's major features. You should include screenshots of how

your system will behave (users don't want to read through a lot of text!).

6. Glossary: List all technical terms and their precise definitions here. These will be

terms about your application, not about programming or software engineering. For

example, in a grade-keeper application, terms like "course", "grade", "mark", and

"GPA" all need precise definitions.

See

 Software Project Survival Guide -

http://www.construx.com/Thought_Leadership/Books/Survival_Guide/SPSG_Resour

ces_by_Subject/

Consult

 PM: Ch. 8 Understanding requirements, then the following chapters as needed Ch.

9 Requirement Modeling: Scenario-based method, Ch. 10 Requirement Modeling:

Class-based methods, Ch. 11 Requirement Modeling: Patterns and Web / Mobile

Apps

 IS: Ch. 4 Requirements engineering

http://www.construx.com/Thought_Leadership/Books/Survival_Guide/SPSG_Resources_by_Subject/
http://www.construx.com/Thought_Leadership/Books/Survival_Guide/SPSG_Resources_by_Subject/

CMPT 275 / Fall 2017 / H. Tsang - 3 -

2) Design Document

Your design document outlines the high-level organization of your system, and it is what the

programmers will refer to during implementation.

Your design document should have these sections:

1. Guidelines: List all technical guidelines (e.g. "Development will be done using the

Eclipse IDE, version XX"), and any relevant ethical or legal issues.

2. System Diagrams: This should include 2 or 3 (or more, if needed) substantial

diagrams showing how the major modules, classes, and functions of your system

relate and share data. Important: these must be diagrams as described in our (System

models) textbook; you must follow the proper rules and notations for the diagrams

you use. It is not acceptable to make up your own kind of diagram! If you are using

an object-oriented programming language, than one of your diagrams ought to be a

class diagram.

Keep in mind the purpose of this is not just to draw pretty diagrams, but to create

blue prints that will later on help you implement your system. Do not forget to

describe the diagrams.

3. Data Requirements This is a summary of all the I/O for your system, including

exact definitions of file and database formats, what other systems (if any) yours

interacts with, and how the user interacts with the system via the

mouse/keyboard/wii-mote/etc.

4. Feature Priority You will be going through three implementation iterations during

the course of this project --- version 1, version 2, and version 3. Label each feature

listed in your user manual, as being delivered in version 1, 2, or 3. Hint: An ordered

list of hyperlinks to the relevant features in the user manual might be a good way to

organize this.

Remember that your Project planning document from the previous assignment should have a

similar (but less detailed) list of what features is planned for each version; so that would be a

good starting point.

It is important to note that version 1 (and, of course, each following version) be a usable

system. Version 1 is a working prototype and you should implement all your promised

version 1 features completely and correctly! Also, keep in mind that version 3 is the final

"gold" version of your project, and anything not implemented by version 3 will not be

implemented at all (at least during this course!).

Think hard about a good ordering for your features, taking into account things like their

dependencies, usefulness, and complexity. Do not over-promise (too many features) or

under-deliver (too few features).

CMPT 275 / Fall 2017 / H. Tsang - 4 -

Useful information

 IEEE Standard for Information Technology--Systems Design--Software Design

Descriptions (1016-2009) http://standards.ieee.org/findstds/standard/1016-2009.html

Consult

 PM: Ch. 12 Design Concepts and Ch. 13 Architectural design

 IS: Ch. 5 System modeling and Ch. 6 Architectural design

3) Quality Assurance Plan

This document details everything your team will do to ensure the quality of your project. It

must include at least the following information:

1. The software tool(s) you are using to perform automatic unit testing, and any other

kinds of software testing. Do a survey to find out what tools are available. Tell us

how you generate and manage your test cases.

2. The internal deadlines your group sets for unit/system testing of the code for release.

Naturally, these deadlines must be well enough before the project submission date to

give you time to do the testing and fix errors that might arise, but also late enough so

that the development group has time to get all the features implemented.

3. Give the time, date, and location for when user acceptance testing of version 3 of

your project (the final version) will be done. If you also want to do user testing for

one or both of the earlier versions, then include the time, date, and location for those

tests as well.

Also tell us how this testing will be done: what will you be asking the users to do?

Describe your the testing you plan to do in enough detail so that someone not in your

group could run it for you.

4. Detail what kind of integration testing you expect to do, and how you expect to do it.

It's wise to avoid "big bang" integration, where all the models are combined and

tested at once. Instead, tell us how you plan to incrementally integrate and test the

system. Be clear about how this testing differs from the unit testing you are also

doing.

5. The software tool(s) you are using to measure the size and complexity of your project.

You should be automatically counting various software metrics such as number of

files, number of lines of codes, number of classes, etc.

In addition to providing the raw measurement values, graph this measurement data

(e.g. as line-graphs using an Excel spreadsheet) for each version of your project.

Clearly label your data and graphs so that someone unfamiliar with the details of

your project can understand what it is about without having to look at anything other

than the graph itself.

6. List everything else you are doing to ensure the quality of your project. Give specific

times and dates whenever possible.

http://standards.ieee.org/findstds/standard/1016-2009.html

CMPT 275 / Fall 2017 / H. Tsang - 5 -

Some examples:

 http://www.mhhe.com/engcs/compsci/pressman/graphics/Pressman5sepa/common/cs

2/sqa.pdf

 http://acis.mit.edu/acis/sqap/sqap.r1.html

 http://qallme.fbk.eu/DEL/QALL-ME_D9.1_final.pdf

 http://energy.gov/cio/downloads/software-quality-assurance-plan-example

 IEEE Standard for Software Quality Assurance Plans (IEEE Std 730-1998),

http://users.csc.calpoly.edu/~jdalbey/205/Resources/IEEE7301989.pdf

 IEEE Standard for Configuration Management in Systems and Software Engineering

(828-2012) http://standards.ieee.org/findstds/standard/828-2012.html

Consult

 PM: Ch. 19 Quality Concepts and Ch. 21 Software Quality Assurance

 IS: Ch. 24 Quality management

Submission

You need to submit your documents in two locations:

1) Submit via canvas.sfu.ca

Submit the three documents (Requirement Document, Design document, and

Quality Assurance Plan) in both formats: a) MS Word and b) PDF.

Filename convention: Group-XX-Requirements.docx, Group-XX-

Design.docx, and Group-XX-QA.docx. Note that X is your group number, for

Group one, XX = 01.

2) Turnitin

Plagiarism detection software (Turnitin) will be used to screen assignments

on this course. This is being done to verify use of all material and sources in

assignments is documented. See HW 1 for submission information.

Please note that marks will be deducted if you do not follow the above specifications

(include but not limited to filename convention, file format, and citation style).

-END-

Appendix A: IEEE Standards you might want to consult.

Comprehensive List of Important IEEE Software Engineering
Standards2

IEEE Std 610.12-
1990

IEEE Standard Glossary of
Software Engineering Terminology

Note: This standard will soon be superseded
by another ISO/IEC IEEE joint standard IEEE
Std 24765. It is much more comprehensive
than 610.19. You can get the final draft now.

2 Source http://cs.hbg.psu.edu/cmpsc487/IEEEStds_List.htm

http://www.mhhe.com/engcs/compsci/pressman/graphics/Pressman5sepa/common/cs2/sqa.pdf
http://www.mhhe.com/engcs/compsci/pressman/graphics/Pressman5sepa/common/cs2/sqa.pdf
http://acis.mit.edu/acis/sqap/sqap.r1.html
http://qallme.fbk.eu/DEL/QALL-ME_D9.1_final.pdf
http://energy.gov/cio/downloads/software-quality-assurance-plan-example
http://users.csc.calpoly.edu/~jdalbey/205/Resources/IEEE7301989.pdf
http://standards.ieee.org/findstds/standard/828-2012.html

CMPT 275 / Fall 2017 / H. Tsang - 6 -

IEEE Std 730-
2002

IEEE Standard for Software
Quality Assurance Plans

This standard specifies the format and content
of Software Quality Assurance plans.

IEEE Std 828-
2005

IEEE Standard for Software
Configuration Management Plans

This standard specifies the content of a
Software Configuration Management plan
along with requirements for specific activities.

IEEE Std 829-
2008

IEEE Standard for Software Test
Documentation

This standard describes the form and content
of a basic set of documentation for planning,
executing and reporting software testing.

IEEE Std 830-
1998

IEEE Recommended Practice for
Software Requirements
Specifications

This document recommends the content and
characteristics of a Software Requirements
Specification. Sample outlines are provided.

IEEE Std 982.1-
2005

IEEE Standard Dictionary of
Measures to Produce Reliable
Software

This standard provides a set of measures for
evaluating the reliability of a software product
and for obtaining early forecasts of the
reliability of a product under development

IEEE Std 1008-
1987 (Reaffirmed
2003)

IEEE Standard for Software Unit
Testing

This standard describes a sound approach to
software unit testing, and the concepts and
assumptions on which it is based. It also
provides guidance and resource information.

IEEE Std 1012-
2004

IEEE Standard for Software
Verification and Validation

This standard describes software verification
and validation processes that are used to
determine if software products of an activity
meets the requirements of the activity and to
determine if software satisfies the user's needs
for the intended usage. The scope includes
analysis, evaluation, review, inspection,
assessment and testing of both products and
processes.

IEEE Std 1016-
2009

IEEE Recommended Practice for
Software Design Descriptions

This document recommends content and
organization of a Software Design Description.

IEEE Std 1028-
2008

IEEE Standard for Software
Reviews

This standard defines five types of software
reviews and procedures for their execution.
Review types include management reviews,
technical reviews, inspections, walk-throughs
and audits.

IEEE Std 1044-
1993 (Reaffirmed
2002)

IEEE Standard Classification for
Software Anomalies

This standard provides a uniform approach to
the classification of anomalies found in
software and its documentation. It includes
helpful lists of anomaly classifications and
related data.

IEEE Std 1058-
1998

IEEE Standard for Software
Project Management Plans

This standard describes the format and
contents of a software project management
plan.

IEEE Std 1061-
1998

IEEE Standard for a Software
Quality Metrics Methodology

 This standard describes a methodology--
spanning the entire life cycle--for establishing
quality requirements and identifying,
implementing, and validating the corresponding
measures.

IEEE Std 1062-
1998

IEEE Recommended Practice for
Software Acquisition

This document recommends a set of useful
practices that can be selected and applied
during software acquisition. It is primarily suited
to acquisitions that include development or
modification rather than off-the-shelf purchase.

CMPT 275 / Fall 2017 / H. Tsang - 7 -

IEEE Std 1063-
2001

IEEE Standard for Software User
Documentation

This standard provides minimum requirements
for the structure, content and format of user
documentation--both printed and electronic.

IEEE Std 1074-
2006

IEEE Standard for Developing
Software Life Cycle Processes

This standard describes an approach for the
definition of software life cycle processes.

IEEE Std 1175.1-
2002

IEEE Guide for CASE Tool
Interconnections - Classification
and Description

 This standard is the first of a planned series of
standards on the integration of CASE tools into
a productive software engineering
environment. This part describes fundamental
concepts and introduces the remaining parts.

IEEE Std 1175.2-
2006

IEEE Recommended Practice for
CASE Tool Interconnection:
Characterization of
Interconnections

This recommended practice describes
interconnections that need to be understood
and evaluated when buying, building, testing,
or using computer-aided software engineering
(CASE) tools.

IEEE Std 1175.3-
2004

IEEE Standard for CASE Tool
Interconnections-Reference Model
for Specifying Software Behavior

The purpose of this standard is to specify a
common set of modeling concepts based on
those found in commercial CASE tools for
describing the operational behavior of a
software product. This standard establishes a
uniform, integrated model of software concepts
related to software functionality.

IEEE Std 1175.4-
2008

EEE Standard for CASE Tool
Interconnections--Reference
Model for Specifying System
Behavior

This standard specifies a Conceptual
Metamodel for understanding and describing
the causal behavior for a system. The purpose
of this Conceptual Metamodel is to express
causal behavior and compositions of causal
behavior in a model that integrates all
observable operational features of a system
into one behavior specification. It provides the
necessary semantic elements for describing
general hardware/software systems, including
hardware-only, software-only, or mixed system
components, and it allows these different types
of components to be treated in a consistent
manner, providing a basis for representing a
wide variety of systems.

IEEE Std 1220-
2005 (ISO/IEC
26702)

IEEE Standard for the Application
and Management of the Systems
Engineering Process

This standard describes the systems
engineering activities and process required
throughout a system's life cycle to develop
systems meeting customer needs,
requirements and constraints.

IEEE Std 1228-
1994

IEEE Standard for Software
Safety Plans

This standard describes the minimum content
of a plan for the software aspects of
development, procurement, maintenance and
retirement of a safety-critical system.

IEEE Std 1233-
1998

IEEE Guide for Developing
System Requirements
Specifications

This document provides guidance on the
development of a System Requirements
Specification, covering the identification,
organization, presentation, and modification of
requirements. It also provides guidance on the
characteristics and qualities of requirements.

CMPT 275 / Fall 2017 / H. Tsang - 8 -

IEEE Std 1320.1-
1998

IEEE Standard for Functional
Modeling Language— Syntax and
Semantics for IDEF0

This standard defines the IDEF0 modeling
language used to represent decisions, actions,
and activities of an organization or system.
IDEF0 may be used to define requirements in
terms of functions to be performed by a desired
system.

IEEE Std 1320.2-
1998

IEEE Standard for Conceptual
Modeling-- Language Syntax and
Semantics for IDEF1X 97
(IDEFobject)

This standard defines two conceptual modeling
languages, collectively called IDEF1X97
(IDEFObject). The language support the
implementation of relational databases, object
databases, and object models.

IEEE Std 1362-
1998 (Reaffirmed
2007)

IEEE Guide for Information
Technology-- System Definition--
Concept of Operations (ConOps)
Document

This document provides guidance on the
format and content of a Concept of Operations
(ConOps) document, describing characteristics
of a proposed system from the users'
viewpoint.

IEEE Std 1462-
1998 // ISO/IEC
14102:1995

IEEE Standard--Adoption of
International Standard ISO/IEC
14102: 1995-- Information
Technology--

Guideline for the Evaluation and Selection of
CASE tools

IEEE Std 1465-
1998 // ISO/IEC
12119

IEEE Standard Adoption of
International Standard ISO/IEC
12119:1994(E), Information
Technology-- Software packages--
Quality requirements and testing

This standard describes quality requirements
specifically suitable for software packages and
guidance on testing the package against those
requirements.

IEEE Std 1471-
2000 (ISO/IEC
42010)

IEEE Recommended Practice for
Architectural Description of
Software Intensive Systems

This document recommends a conceptual
framework and content for the architectural
description of software-intensive systems.

IEEE Std 1490-
2003

 IEEE Guide-- Adoption of PMI
Standard-- A Guide to the Project
Management Body of Knowledge

This document is the IEEE adoption of a
Project Management Body of Knowledge
defined by the Project Management Institute. It
identifies and described generally accepted
knowledge regarding project management.

IEEE Std 1517-
1999

IEEE Standard for Information
Technology— Software Life Cycle
Processes— Reuse Processes

This standard provides life cycle processes for
systematic software reuse. The processes are
suitable for use with IEEE/EIA 12207.

ISO 9001:2000
Quality Management Systems--
Requirements

This standard specifies the requirements for an
organizational quality management system
aiming to provide products meeting
requirements and enhance customer
satisfaction.

ISO/IEC 9126-
1:2001

Software Engineering-- Product
Quality- -Part 1: Quality Model

This standard provides a model for software
product quality covering internal quality,
external quality, and quality in use. The model
is in the form of a taxonomy of defined
characteristics which software may exhibit.

IEEE/EIA 12207-
2008

Systems and Software
Engineering - Software Life Cycle
Processes

This International Standard establishes a
common framework for software life cycle
processes, with well-defined terminology, that
can be referenced by the software industry. It
applies to the acquisition of systems and
software products and services, to the supply,
development, operation, maintenance, and
disposal of software products and the software
portion of a system, whether performed

CMPT 275 / Fall 2017 / H. Tsang - 9 -

internally or externally to an organization.

IEEE/EIA
12207.1- 1996

Industry Implementation of
International Standard ISO/IEC
12207:1995, Standard for
Information Technology-- Software
Life Cycle Processes--Life Cycle
Data

This document provides guidance on recording
data resulting from the life cycle processes of
IEEE/EIA 12207.0.

IEEE Std
14143.1- 2000 //
ISO/IEC 14143-
1:1998

IEEE Adoption of ISO/IEC 14143-
1:1998-- Information
Technology— Software
Measurement— Functional Size
Measurement— Part 1: Definition
of Concepts

This standard describes the fundamental
concepts of a class of measures collectively
known as functional size.

ISO/IEC TR
14471:1999

Information technology-- Software
engineering--Guidelines for the
adoption of CASE tools

This document provides guidance in
establishing processes and activities that may
be applied in the adoption of CASE technology.

ISO/IEC
14764:2006

Information Technology-- Software
Maintenance

This standard elaborates on the maintenance
process provided in ISO/IEC 12207. It provides
guidance in implementing the requirements of
that process.

ISO/IEC
15026:1998

Information Technology-- System
and Software Integrity Levels

This International Standard introduces the
concepts of software integrity levels and
software integrity requirements. It defines the
concepts associated with integrity levels,
defines the processes for determining integrity
levels and software integrity requirements, and
places requirements on each process.

ISO/IEC TR
15271:1998

 Information technology-- Guide
for ISO/IEC 12207 (Software Life
Cycle Processes)

This document is a guide to the use of ISO/IEC
12207.

ISO/IEC
15288:2008

Systems Engineering-- System
Life Cycle Processes

This standard provides a framework of
processes used across the entire life cycle of
human-made systems.

ISO/IEC TR
15504 (9 parts)
and Draft IS
15504 (5 parts)

Software Engineering-- Process
Assessment

This technical report (now being revised as a
standard) provides requirements on methods
for performing process assessment as a basis
for process improvement or capability
determination.

ISO/IEC
15939:2002

Software Engineering-- Software
Measurement Process

This standard provides a life cycle process for
software measurement. The process is suitable
for use with IEEE/EIA 12207.

ISO/IEC
16085:2006

IEEE Standard for Software Life
Cycle Processes- Risk
Management

This standard provides a life cycle process for
software risk management. The process is
suitable for use with IEEE/EIA

ISO/IEC
19761:2003

Software engineering-- COSMIC-
FFP-- A functional size
measurement method

This standard describes the COSMIC-FFP
Functional Size Measurement Method, a
functional size measurement method
conforming to the requirements of ISO/IEC

CMPT 275 / Fall 2017 / H. Tsang - 10 -

14143-1.

ISO/IEC
20926:2003

 Software engineering - IFPUG 4.1
Unadjusted functional size
measurement method - Counting
practices manual

This standard describes IFPUG 4.1 Unadjusted
Function Point Counting, a functional size
measurement method conforming to the
requirements of ISO/IEC 14143-1.

ISO/IEC
20968:2002

Software engineering--Mk II
Function Point Analysis-- Counting
Practices Manual

This standard describes Mk II Function Point
Analysis, a functional size measurement
method conforming to the requirements of
ISO/IEC 14143-1.

ISO/IEC 23026
(IEEE Std 2001-
2002)

IEEE Recommended Practice for
the Internet--Web Site
Engineering, Web Site
Management and Web Site Life
Cycle

 This document recommends practices for
engineering World Wide Web pages for use in
Intranet and Extranet environments.

ISO/IEC 90003

 Software and Systems
Engineering-- Guidelines for the
Application of ISO 9001:2000 to
Computer Software

 This standard provides guidance for
organizations in the application of ISO
9001:2000 to the acquisition, supply,
development, operation and maintenance of
computer software.

